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C++ development frustration: safety & security

Concurrency safety: Races, deadlocks, performance bottlenecks

Debugging issues in my code

Memory safety: Bounds safety issues (read/write beyond the bounds of an object or array)

R
Memory safety: Use-after-delete/free (dangling pointers, iterators, spans, ...)

Security issues: other security issues (secret disclosure, vulnerabilities, exploits, ...)

Memory safety: Forgot to delete/free (memory leaks)

Type safety: Using an object as the wrong type (unsafe downcasts, unsafe unions, ...)
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poll (1/3)

What is the first thing that comes
Into Mind when somebody says:
“add threading to your app” ?
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For multi-threaded applications,
where is most of your time spent?
(with respect to threading)
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Would you use a model in which
synchronization is not needed?
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promise of the talk




Agendoa

Threads Considered Harmful

Concurrent Design by Example
C++23 Executors

Performmance Topics
Building New Concurrency Abstractions
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threads

raw threads + synchronization (locks)
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problems with threads

performance
understandability

thread safety

composability
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you are likely to get it wrong!

performance
understandability

thread safety

composability




a generdl methoa

without locks
without safety issues (*)
with good performance
composable & decomposable
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using tasks

task = independent unit of work
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this talk

a lot of code examples

https://github.com/lucteo/cppnow2021-examples
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not included

GPUs
SIMD
coroutines
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An Introduction to concurrency

without using locks




hello, concurrent world!
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2. create concurrent work




INnterlude

Tracy profiler
spawning tasks & waiting for them
task system
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3. delayed continuation
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5. fork-join

same thread




6. concurrent for




/. concurrent reduce
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8. concurrent scan
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9. task graphs




10. pipeline
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11. serializers




high-level concurrency abstractions

Nno Mmore low-level primitives
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examples

executors
senders & recelvers
sender algorithms
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targeting throughput

latency can dlso be a concern
(but not the main one)
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global pool of worker threads

typically, number of threads == number of cores
can be adjusted
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key insight: have enough tasks

more tasks than number of cores (at any time)
all worker threads have work to do
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small library overhead

library has a small overhead
tasks should be big enough

=> good speedup
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serializers can be ok

If we have enough other tasks in the system
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examples
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Extensibility I1s the key




design is not prescriptive

practice always prompts new cases




extensibility is the key

able to extend to a variety of cases
easy o extend
(somehow easy to understand the internals)
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examples
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thout locks
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threading primitives

pushed down to the framework
level
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NO excuse for
raw threads and locks
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http://nolocks.org

@@@@@@@



use proper concurrency design
INn C++, now!
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C++ now
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