Designing Concurrent C++
Applications

Lucian Radu Teodorescu

Designing Concurrent C++
Applications

Lucian Radu Teodorescu

lucteo.ro/pres/2021-cppnow/

I @LucT3o0

(e an v t+ cf ‘

@ docs.google.com/presentation/d/1rfdksmy?2

C++ development frustration: safety & security

Concurrency safety: Races, deadlocks, performance bottlenecks

Debugging issues in my code

Memory safety: Bounds safety issues (read/write beyond the bounds of an object or array)

R
Memory safety: Use-after-delete/free (dangling pointers, iterators, spans, ...)

Security issues: other security issues (secret disclosure, vulnerabilities, exploits, ...)

Memory safety: Forgot to delete/free (memory leaks)

Type safety: Using an object as the wrong type (unsafe downcasts, unsafe unions, ...)

0% 5% 10% 15% 20% 25% 30 %

poll (1/3)

What is the first thing that comes
Into Mind when somebody says:
“add threading to your app” ?

I @LucT3o0

poll (2/3)

For multi-threaded applications,
where is most of your time spent?
(with respect to threading)

I @LucT3o0

poll (3/3)

Would you use a model in which
synchronization is not needed?

@LucT3o0

)
C
O,
-
O,
@),
O
@),
C
O,

-
O
7p,

D
-

@LucT3o0

promise of the talk

Agendoa

Threads Considered Harmful

Concurrent Design by Example
C++23 Executors

Performmance Topics
Building New Concurrency Abstractions

SN NN

@LucT3o0

Bloomberg T

Engineering

ViR TUAL EVENT

Threads Considered Harmful

g \1“'“czm’““ l

https://youtu.be/ _TIXjxXNSCs

threads

raw threads + synchronization (locks)

@LucT3o0

problems with threads

performance
understandability

thread safety

composability

@LucT3o0

you are likely to get it wrong!

performance
understandability

thread safety

composability

a generdl methoa

without locks
without safety issues (*)
with good performance
composable & decomposable

@LucT3o0

using tasks

task = independent unit of work

@LucT3o0

overload

REe1ocuSIngiInimuanisian

rarali2lising cods carn mase it
fausiraie Wiks =iqglorg now 1o geit e

el theoretical results

il

T e,Glohalilockdown o 'nﬁksh

-, Wiz mleienleimissiesine inive Vel rtrunrlr nizizivl neil irzbezizt

> all concurrent algorithms
OVGI"'OC]CIP —~ > safety ensured

> NO need for locks
Le%%wsgfﬁrgz > high efficiency for greedy algorithm
R, gl WY G > high speedups
o RN N 4 4%) - easy composition & decomposition

comnosltlon and noumllosltlon S o ey
of Task Systems "~ = - q_v k'Y

Concurrency ¢an be hard to get rlghT but - F gt ~

- tasks can help. N * g 1 :

ntroduchon t+*
g a simple n

horough °

ntroduction't

. b e
p, ‘ - ’ ! 5 ey
Y. 1 ; g
/i 5 . N S
b v o’ -
i " i .
- g »~ B = = i
- . E L
~ - Fia ——
2 -~ ~ -
3 - ,’0 4 r;\ ‘ % l T
J R » o, N
: ! \y i
n > y | % i
-

5

this talk

a lot of code examples

https://github.com/lucteo/cppnow2021-examples

@LucT3o0

not included

GPUs
SIMD
coroutines

LLLLLL

An Introduction to concurrency

without using locks

hello, concurrent world!

LLLLLL

2. create concurrent work

INnterlude

Tracy profiler
spawning tasks & waiting for them
task system

@LucT3o0

3. delayed continuation

4.]oin

5. fork-join

same thread

6. concurrent for

/. concurrent reduce

oM.

S
-

8. concurrent scan

404444@%

QOQOQGQG

9. task graphs

10. pipeline

——

11. serializers

high-level concurrency abstractions

Nno Mmore low-level primitives

LLLLLL

examples

executors
senders & recelvers
sender algorithms

@LucT3o0

targeting throughput

latency can dlso be a concern
(but not the main one)

LLLLLL

global pool of worker threads

typically, number of threads == number of cores
can be adjusted

LLLLLL

key insight: have enough tasks

more tasks than number of cores (at any time)
all worker threads have work to do

I @LucT3o0

small library overhead

library has a small overhead
tasks should be big enough

=> good speedup

@LucT3o0

serializers can be ok

If we have enough other tasks in the system

LLLLLL

examples

LLLLLL

Extensibility I1s the key

design is not prescriptive

practice always prompts new cases

extensibility is the key

able to extend to a variety of cases
easy o extend
(somehow easy to understand the internals)

I @LucT3o0

examples

LLLLLL

thout locks

N i ? k\.; '
.\./f..‘)/d«.,}h\/\x".
= .
A AT Te e
& AN).)\.J' vll\\%

=
>
O
-
Q
S
S
-
O
-
O
O

T

threading primitives

pushed down to the framework
level

@LucT3o0

fe]g

n

0
O
C
O
S

O
3
O

@LucT3o0

NO excuse for
raw threads and locks

@LucT3o0

http://nolocks.org

@@@@@@@

use proper concurrency design
INn C++, now!

LLLLLL

C++ now

MAY 2-7

