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why threads?
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typical problems?
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typical problems?
typical solutions?
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safety

correctness
complexity
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goals

concurrent code ~ sequential code
“structured programming”, but for concurrency
nMake concurrency reasonable
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work In progress
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1. Concurrent programming
2. Hylo

3. EXpressing concurrency
4. Implementation details

5. Asynchrony

6. Analysis
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operations

a program is a set of interconnected operations
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Ilow Diagrams, Taring Machines
And Languages With Only Two

o)
Formation Rules

Cornsavo Bouv axp Gruserre Jacorn:

Internatiumel Compwction Certre ama Tstiuta Noazionaie
i

per le Applicavioni del Caleolo, Poma, Italy

In the first por of the paper, floaw dagrams are introducad
to represert infer al. mappings of a set into itsell. Although
nct every dagram ic decomposanle into a finte nurher of
given base diagrams, this becomes fivs at a semantical level
duve to o suitable extersion of tha given tet and of the base
mappings defined in 1, Two normolization methods o flow
diagrams are given. The firse has fhree base diagrams; the
second, cnly two.

In the sacond sar cf the paper, the second method is ap
plied to the theary of Turing machnes, With avery Turing
maching provided witk ¢ two-way half-tape, there is associ-
atec a similer machine, doing essastially the same job, but
working on o tape obtaived from the first one by inlersperning
alterrata blork scuores The saw machire belongs 1o the
fomily, eliewhzre ntroduced, generaled by composition and
irerction from the two machines A cnd K. Thot tamily i o
picper subfamily of the whole femily of Turing machines,

1. Introduction and Summary

The =at of blocs o flow diagrams is & two-dimensional
progrouuning languagrs which was nzed at the beginning
of awiometic computing anc which now #ll enjoyz a
certain favor. As far as is known, a systematic theory of
this language does not exist. At th. most, there are some
papets by Peter L], Gorn [2], Hermes [3], Ciampa [3],
Rigazt [5), Tanov (6], Asser [7), where flow disgruns wre
introduced with different purposes and defined n ccrnce-
tion with Lhe deseriptions of agorithms or pmgrams.

"Lhia paper wns presonsed o o invited talk st the 10934 Intor-
nationad Colloguium on Aigebraic Linguistics and Automats
Theory, Jorusalem, lsrac. Urzoa stion of e manusoripl wis
eupperted by Navioun! Scienve Foundut or Grant GI-2380.

This work was earcied nan st the Isritute Naztonale per le
Applizazioni del Caleola (TINAC in =ollaborstion with tha In.
ternacional Computation Centre (1CC)) gader the Lielisn Con-

siglia Nazworsle dalle Rieercha i(CNE Reecareh Group Ne. 28
for 1Wi2.64.

300 Communications of the ACM
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In this paper, fow diagrams ave introduced by the
ostensive method: this is done to aveid definitions which
certainly would not ke of much usze In the firsy part
{(wntten by (. Jacopin ), methods of normalization of
diagrams are studied, which allow them to be dzcomposed
imto base dingrams of thrae typee (first result) or of two
types (second resaly ). Tn the second part of the paper (by
C. Bohm ), zome results of a previous paper sre ranorted
[8] une? the resnlts o the fissh part of thes paper are Jhen
uzcd to prove that every Turing machinz 13 reducible mte,

nDroin

writoen

2. Normalization of Flow Diagrams

IC i u well-known [act tha, & fow daigran is su lable
for rcpresenting programs, computers, 'arng machines,
eLe, Diagrams are vsvally eomposed of boxes mutually
convected by oricnted lines, The bexes are of functional
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a determined sense is 2guivalent to, a program
m a language which admits as formasion rules
only composition and iteration.

Edgar Dijkstra: Go To Statement Considered Harmful

Go To Statement Considered Harmful

Key Words and Phrases: go to statement, jump instruction,
branch instruction, conditional clause, alternative clause, repet-
itive clause, program intelligibility, program sequencing

. CR Categories: 4.22, 5.23, 5.24

EDITOR:

For a number of years I have been familiar with the observation
that the quality of programmers is a decreasing function of the
density of go to statements in the programs they produce. More
recently I discovered why the use of the go to statement has such
disastrous effects, and I became convinced that the go to state-
ment should be abolished from all “higher level” programming
languages (i.e. everything except, perhaps, plain machine code).
At’that time [ did not attach too much importance to this dis-
covery; I now submit my considerations for publication because
L in very recent discussions in which the subject turned up, I have
been urged to do so.

My first remark is that, although the programmer’s activity
ends when he has constructed a correct program, the process
taking place under control of his program is the true subject
matter of his activity, for it is this process that has to accomplish
the desired effect; it is this process that in its dynamic behavior
has to satisfy the desired specifications. Yet, once the program has
been made, the “making’’ of the corresponding process is dele-
| gated to the machine

TN

dynamic progress is only characterized when we also give to which
call of the procedure we refer. With the inclusion of procedures
we can characterize the progress of the process via a sequence of
textual indices, the length of this sequence being equal to the
dynamic depth of procedure calling.

Let us now consider repetition clauses (like, while B repeat A
or repeat A until B). Logically speaking, such clauses are now
superfluous, because we can express repetition with the aid of
recursive procedures. For reasons of realism I don’t wish to ex-
clude them: on the one hand, repetition clauses can be imple-
mented quite comfortably with present day finite equipment; on
the other hand, the reasoning pattern known as “induction’
makes us well equipped to retain our intellectual grasp on the
processes generated by repetition clauses. With the inclusion of
the repetition clauses textual indices are no longer sufficient to
describe the dynamic progress of the process. With each entry into
a repetition clause, however, we can associate a so-called ‘‘dy-
namic index,”” inexorably counting the ordinal number of the
corresponding current repetition. As repetition clauses (just as
procedure calls) may be applied nestedly, we find that now the
progress of the process can always be uniquely characterized by a
(mixed) sequence of textual and/or dynamie indices.

The main point is that the values of these indices are outside
programmer’s control; they are generated (either by the write-up
of his program or by the dynamic evolution of the process) whether

he arteaheae ae nalt THhasr monesrda tndanandant ananundinatas sn mehink

APIC Studies in Data Processing No. 8

=] P § LS
FRLERETI

O.-J. Dahl, E. W. Dijkstra and C. A. R. Hoare

Academic Press
London New York San Francisco
A Subsidiary of Harcourt Brace Jovanovich, Publishers




use of abstractions

abstractions can be used as operations
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recursive decomposition

a program can be recursively decomposed into operations
(operations nest)
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regular shape

operations have one entry point, and one exit point
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local reasoning

within a scope, one can arrange the operations in a way that
enables local reasoning
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soundness and completeness

all programs can be written in a way that respect the above
laws
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concurrency
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happens-before



sequential program

total ordering on operation execution
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concurrent Program

partial ordering on operation execution




modeling
concurrency
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3 execution possibilities
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concurrency
(design time)

expressing execution constraints
ignoring actual execution
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basic concurrent constraints

a <>b

b < a
(a <b) v (b < a) mutual exclusion
-(a < b) A =(b < a) concurrent execution




design time

—
{
e

concurrent execution Mmutual execution
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advanced concurrent constraints

conditional concurrency
(sometimes exclusion, sometimes concurrent)

more than 2 operations
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focus

local constraints
non-dynamic constraints
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there is nothing more to concurrency
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structured concurrency

concurrency doesn’t contradict structured programming
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Implementation
notes
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thread conservation

one thread in, one thread out



stack conservation

one In stack, one out stack

(out stack >= in stack)
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thread-stack relation

one thread, one stack



NnuMmber of active threads

the number of stacks that can vary at the same time
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logical thread

variation of stack pointer over time
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Hylo programming language

Y, / ‘ fast by definition
safe by default

simple

www. hylo-lang.org
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http://www.hylo-lang.org

builds upon the best parts from C++

value semantics
pass by value, without copy
copies & moves are explicit
consuming move semantics
rules for capture access w/o consuming

@LucTeo@techhub.social



Mutable Value Semantics




Swift

w/o reference semantics
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RUST

w/o lifetime annotations

‘
G
4'(""TMJSE pROOV

® Stops Squeaks
® Drives Out Moisture
# Cleans and Protects
*Loosens Rusted Parts
* Frees Sticky Mechanisms

SEE CAUTIONS ON REVERSE
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functional

with controlled mutation
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value semantics

template <typename T>

voild append2(std::vector<T>& destination, T& value) {
destination.push_back(value);
destination.push_back(value);

}

std::vector<int> data;

append2(data, datal0]);

I @LucTeo@techhub.social



value semantics

append2<T>(_ destination Array<T>, _ value: T) {
destination.push_back(value)
destination.push_back(value)

}
data: Array<Int

append2(&data, datal0])
value = datal0].copy()
append2(&data, value)

copies & moves

are explicit

I @LucTeo@techhub.social



law of exclusivity

no simultaneous read + write access
no simultaneous write + write access
read + read = ok
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k io
LOCAL No spooky action

at a distance

local reasoning

No spooky action at a distance
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Hello, concurrent world!

concurrent_greeting() {

f 1
print("Hello, concurrent world!")
}
f.await()

}

I @LucTeo@techhub.social



task relations




task relations

fun task relations() {
pruint("T1")
var f = spawn { print("T3") }
print("T2")
f.await()
print("T4")
orint("T5")
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fun run_work() -> Int {
var sum = 0
&sum += run_task(1)

var f2 = spawn_(fun[] () -> Int {
var local_sum = 0
&local_sum += run_task(2)

var f = spawn_(fun[] () -> Int { return run_task(7) })
&local _sum += run_task(6)
&local _sum += f.await()

&local _sum += run_task(13)
&local _sum += run_task(17)
return local_sum

})

var f3 = spawn_(fun[] () -> Int {
return run_task(3) + run_task(8)

)

var f4 = spawn_(fun[] () -> Int {
var local _sum = 0
&local _sum += run_task(4)

var f = spawn_(fun[] () -> Int { return run_task(10) })
&local _sum += run_task(9)
&local _sum += f.await()

&local _sum += run_task(14)
return local _sum

})

var f5 = spawn_(fun[] () -> Int {
var local _sum = 0
&local _sum += run_task(5)

var f = spawn_(fun[] () -> Int { return run_task(12) + run_task(16) })
&local _sum += run_task(11l) + run_task(15)
&local _sum += f.await()

return local _sum

})

sum += f2.await() + f3.await() + f4.await() + f5.await()
&sum += run_task(18)
return sum
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fun run work() -= Int {
var sum = 0
&sum += run task(1) |

var f2
var T3
var T4
var 5

sum += f2.awailt() + f3.awaitt() + f4.await() + f5.await()
&sum += run_task(18)
return sum

}
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var f2 = spawn_(fun[] () -> Int {
var lLlocal sum = 0
&local sum += run task(2)

var f = spawn_(fun[] () -> Int { return run_task(7) })
&local sum += run task(6)
&local sum += f.await()

&local sum += run task(13)
&local sum += run task(17)
return local sum

)
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- — .

var f3 = spawn_(fun[] () -> Int {
return run task(3) + run task(8)

1)
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var f4 = spawn_(fun[] () -> Int {
var local _sum = 0
&local sum += run task(4)

var f = spawn_(fun[] () -> Int { return run_task(10) })
&local sum += run task(9)
&local sum += f.await()

&local sum += run task(14)
return local sum
)
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var 5 = spawn_(fun[] () -> Int { ~ e —— N — .
var local sum = 0 _,-_,-

&local sum += run task(5)

var f = spawn_(funl] () -> Int { return run_task(12) + run_task(16) })
&local_sum += run_task(11l) + run_task(15)
&local _sum += f.await()

return local sum

1)

I @LucTeo@techhub.social



async/await model
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async vs sequential

concurrent_greeting() {
f
print("Hello, concurrent world!")

f.awailt()

}

regular_greeting() {
print("Hello, sequential world!")
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async vs sequential

concurrent_greeting() {

regular_greeting() {
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spawn/await = operation

example() {
A()

T C()
B()

f.awalt( )

D()
}
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spawn/await = operation

example() {

A()
B and C() {
f C()
B and C() B( )
f.awailt()

D()
}
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use of abstractions

functions can encapsulate concurrency
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recursive decomposition

decomposition through functions
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recursive decomposition

functions all the way down
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3. regular shape

one entry point, and one exit point
one entry thread, one exit thread
one entry stack, one exit stack
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local reasoning

same as with function calls

Hylo °7 local reasoning
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reasonablie concurrency
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soundness and completeness

same as in structured programming
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example() {
A()

f 1 C0)
B()

f.awalt( )

D()
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concurrency design
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thread 2 | pre2 ————> Bt
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stackfull coroutines

using boost: :context



thread hopping

stack
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thread hopping
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no threads when spawning

execute task inside awatit



other work

D
stack C
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3.

copyable futures

multiple awai1ts waiting on one task
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A()

var Tf1
var f2

spawn { C() }
f1

// pass f2 to a different thread
B( )

?1.await() ¥Z.await()

D() D2( )
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thread 3 “—»_—»“

ihread 2 m—,- “

thread |
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suspend

temporary join the work pool
possible thread hopping on resume
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Asynchrony
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synchronous function

fwrite(_ data: MemoryAddress, _ size: Int, _ count: Int, _ stream: File) Int
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asynchronous function

fwrite(_ data: MemoryAddress, _ size: Int, _ count: Int, _ stream: File) Int
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asynchrony
Is abstracted away




asynchrony / concurrency
Is abstracted away




abstracting concurrency

process_1image(_ 1mage: Image) ImageResult

using multiple threads?
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1. use of abstractions

abstractions can be used as operations  |[E————"
STRUCTURED
FROGRAMMING

-J. Dahl, E. W. Dijkstra and C. A. R. Hoare
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local reasoning

handle_incoming_connection(_ connection: HttpConnection) {
{
// Read the HTTP request from the socket.
request get_request(connection)
request.validate( )
// Handle the request.
response handle_request(request)

// Send back the response.
send_response(response)

} InvalidRequestError( details) {
send_response(BadRequestResponse(details), to: connection)

} CancelledError {
send_response(GatewayTimeoutResponse(), to: connection)

} {
send_response(InternalServerErrorResponse(), to: connection)

}

}
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local reasoning

get_request(_ connection HttpConnection) HttpRequest {

// Do the reading on the network I/0 scheduler.
net_scheduler.activatel( )

// Read the incoming data in chunks, and parse the request while doing 1t.
parser: HttpRequestParser
buffer = MemBuffer(1024*1024)
parser.is_complete {
N connection.read(to: &buffer) // may be an async operation
parser.parse_packet(buffer, of_stize: n)

}

// Done reading; switch now to main scheduler.
main_scheduler.activate( )
parser.request
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concurrency Is an
iImplementation detail
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modelling concurrency

structured concurrency
easy to express concurrency
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safety

No race conditions
no additional synchronization
forward progress guarantee
no deadlocks
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performance

no blocking waits
small spawn / await synchronisation
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stack usage

small stack for worker threads
# coro ~ # threads => not a lot of stack needed
small stacks for thread hopping
=> stack usage is decent
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iInteroperability

no thread-local-storage
harder to interop with external modules
(may require sync-wait)
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Conclusions
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FROM PRINCIPLES

pyl —

PRACTICE

from principles
to practice
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principles

structured programming
concurrency
threads & stacks
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modeling concurrency

concurrency = expressing constraints
only 3 possibilities at runtime
design time: 4 basic constraints
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concurrency in Hylo

easily express concurrency with spawn [ await
no need for a different style
no function colouring
Nno need for additional synchronisation
structured concurrency
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concurrency in Hylo

abstracting concurrency details
local reasoning

reasonable concurrency
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additional benefits

. NO race conditions, no deadlocks
: generally fast, scalable, no oversubscription
. decent stack consumption

@LucTeo@techhub.social



@LucTeo@techhub.social

Hylo concurrency

simple syntax / semantics
concurrent code ~ sequential code
concurrency can be abstracted
structured concurrency
local reasoning
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Hylo concurrency

simple syntax / semantics
concurrent code ~ sequential code
concurrency can be abstracted
structured concurrency
local reasoning



Hylo concurrency

simple
code
abstracted
structured
reasoning
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reasonablie concurrency
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