
New Perspectives
on Solving Concurrency
Lucian Radu Teodorescu
Staff Software Engineer @ Garmin @LucT3o

@LucT3o

New Perspectives
on Solving Concurrency

lucteo.ro/pres/2021-itdays/

@LucT3o

New Perspectives
on Solving Concurrency

my perspectives

@LucT3o

4

software engineering

1968 NATO conference

@LucT3o

concurrency in SE

Dijkstra, 1965

@LucT3o

is the problem solved?

@LucT3o

@LucT3o

Old perspective

@LucT3o

building blocks

independent threads
synchronization primitives

@LucT3o

roads analogy

thread → road
sync primitive → intersection

@LucT3o

works well

for long roads
and few intersections

@LucT3o

different reality

@LucT3o

synchronization issues

deadlock
livelock

starvation
priority inversion

busy waiting

@LucT3o

performance

far from expected

@LucT3o

threads

hard to think of them as independent

@LucT3o

primitives are not OK

threads
synchronization

@LucT3o

Concurrency with tasks

@LucT3o

primitive

task = independent unit of work

@LucT3o

primitive

task = independent unit of work

independent := does not depend on anything but its inputs

@LucT3o

primitive

task = independent unit of work

unit := doesn’t make sense to divide it

@LucT3o

@LucT3o

constraints
instead of locks

@LucT3o

new problem

encoding concurrency with tasks

@LucT3o

Refocusing Amdahl’s Law

high efficiency for Greedy algo
high speedups

𝑆! ≥
𝑁

𝐾 +𝑁 − 𝐾𝑃

𝑁 = 1000
𝐾 = 1

𝑆!""" = 500.25
𝑆!" = 9.91

@LucT3o

The Global Lockdown
of Locks

global solution
safety ensured

no need for locks

@LucT3o

Concurrency
Design Patterns

building blocks for concurrent
applications

@LucT3o

https://youtu.be/_T1XjxXNSCs

@LucT3o

https://bit.ly/2YnVG5U

@LucT3o

tasks

a new solution for concurrency

@LucT3o

Composition and Decomposition
of Task Systems

top-down and bottom-up design

@LucT3o

composition of tasks

not the best solution

@LucT3o

Async computations

@LucT3o

C++ executors

P0443: A Unified Executors Proposal for C++
https://wg21.link/p0443r14

P2300: std::execution
https://wg21.link/p2300r2

https://wg21.link/p0443r14
https://wg21.link/p2300r2

@LucT3o

Executors: a Change
of Perspective

senders/receivers
are a better

concurrency abstraction

@LucT3o

tasks

cannot directly pass values between tasks

@LucT3o

tasks

task body contains the call to the next task
what happens in case of error?

@LucT3o

senders

3 notification channels
wiring done by the framework

@LucT3o

senders

no performance penalty

@LucT3o

asynchronous computations

rename senders into “async computations”

@LucT3o

what can be a computation?

a small chunk of work
a task

a group of tasks
a group of task groups
the entire application

@LucT3o

computations

general solution to concurrency

@LucT3o

computations

compose better than tasks

@LucT3o

computations hierarchy

@LucT3o

computation is an abstraction

allows us to incorporate concurrency in design

@LucT3o

The future

@LucT3o

goals

no more thread safety issues
clean design for concurrency

@LucT3o

change of primitives

threads & locks
⇩

computations

@LucT3o

change of approach

synchronization
⇩

constraints between computations

@LucT3o

patterns & examples

make it teachable

@LucT3o

widespread use

concurrency ≠ frustration

@LucT3o

