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New Perspectives
on Solving Concurrency

my perspectives
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4

software engineering

1968 NATO conference
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concurrency in SE

Dijkstra, 1965
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is the problem solved?
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Old perspective



@LucT3o

building blocks

independent threads
synchronization primitives
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roads analogy

thread → road
sync primitive → intersection
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works well

for long roads
and few intersections
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different reality
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synchronization issues

deadlock
livelock

starvation
priority inversion

busy waiting
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performance

far from expected
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threads

hard to think of them as independent
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primitives are not OK

threads
synchronization
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Concurrency with tasks
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primitive

task = independent unit of work
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primitive

task = independent unit of work

independent := does not depend on anything but its inputs
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primitive

task = independent unit of work

unit := doesn’t make sense to divide it
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constraints
instead of locks
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new problem

encoding concurrency with tasks
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Refocusing Amdahl’s Law

high efficiency for Greedy algo
high speedups

𝑆! ≥
𝑁

𝐾 +𝑁 − 𝐾𝑃

𝑁 = 1000
𝐾 = 1

𝑆!""" = 500.25
𝑆!" = 9.91
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The Global Lockdown
of Locks

global solution
safety ensured

no need for locks
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Concurrency
Design Patterns

building blocks for concurrent 
applications
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https://youtu.be/_T1XjxXNSCs
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https://bit.ly/2YnVG5U
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tasks

a new solution for concurrency
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Composition and Decomposition
of Task Systems

top-down and bottom-up design
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composition of tasks

not the best solution
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Async computations
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C++ executors

P0443: A Unified Executors Proposal for C++
https://wg21.link/p0443r14

P2300: std::execution
https://wg21.link/p2300r2

https://wg21.link/p0443r14
https://wg21.link/p2300r2
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Executors: a Change
of Perspective

senders/receivers
are a better

concurrency abstraction
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tasks

cannot directly pass values between tasks



@LucT3o

tasks

task body contains the call to the next task
what happens in case of error?
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senders

3 notification channels
wiring done by the framework



@LucT3o

senders

no performance penalty
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asynchronous computations

rename senders into “async computations”
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what can be a computation?

a small chunk of work
a task

a group of tasks
a group of task groups
the entire application
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computations

general solution to concurrency
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computations

compose better than tasks
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computations hierarchy
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computation is an abstraction

allows us to incorporate concurrency in design
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The future
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goals

no more thread safety issues
clean design for concurrency
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change of primitives

threads & locks
⇩

computations
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change of approach

synchronization
⇩

constraints between computations
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patterns & examples

make it teachable
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widespread use

concurrency ≠ frustration
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