i'l'olays

#NewPerspectives

/ / L ‘)
& -
4 % f 47, /4
4 % Z A0 / # y /,/‘
S ¥ / 4 J
/ m
; J x
y 7 3 &
y) 7. E\ 4
| / 4

74 ’ "
7, v 4 \ &)
Y, / K ; 7 Y5)
‘ /4 i } y A
7, AW A%
4 . 4’ P
2 i 4
% Yy &
; 4 :
/ 6, /
’
j
/ A

v:,:,zlff,f .) Staff Software Engineer @ Garmin @LucT30

J Lucian Radu Teodorescu

iTdays Innovation, Programming, Technology @LucT30

New Perspectives
on Solving Concurrency

lucteo.ro/pres/2021-itdays/

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays [nnovation, Programming, Technology @LucT30

New Perspectives
on Solving Concurrency

my perspectives

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays Innovation, Programming, Technology @LucT30

software engineering

1968 NATO conference

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays [nnovation, Programming, Technology

concurrency in SE

Dijkstra, 1965

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca

Solution of a Problem in
Concurrent Programming Control

I5. W. Duksrra
Technological Universily, Bindh The Netherlands

A number of mainly independent sequential-cyclic processes
with restricted means of communication with each other can
be made in such a way that at any moment one and only one
of them is engaged in the “critical section” of its cycle.

Introduction

Given in this paper is a solution to a problem for which,
to the knowledge of the author, has been an open question
since at least 1962, irrespective of the solvability. The
paper consists of three parts: the problem, the solution,
and the proof. Although the setting of the problem might
secem somewhat academic at first, the author trusts that
anyone familiar with the logical problems that arise in
computer coupling will appreciate the significance of the
fact that this problem indeed can be solved.

The Problem

To begin, consider N computers, each engaged in a
process which, for our aims, can be regarded as cyclic. In
each of the cycles a so-called “critical section” oceurs and
the computers have to be programmed in such a way that
at any moment only one of these N cyclic processes is in
its critical section. In order to effectuate this mutual
exclusion of critical-section execution the computers can
communicate with each other via a common store. Writing
a word into or nondestructively reading a word from this
store are undividable operations; i.e., when two or more
computers try to communicate (either for reading or for
writing) simultaneously with the same common location,
these communications will take place onc after the other,
but in an unknown order.

The solution must satisfy the following requirements.

(a) The solution must be symmetrical between the N
computers; as a result we are not allowed to introduce a
static priority.

(b) Nothing may bec assumed about the relative speeds
of the N computers; we may not even assume their spceds
to be constant in time.

(¢) If any of the computers is stopped well outside jts
critical section, this is not allowed to lead to potential
blocking of the others.

(d) If more than one computer is about to enter its
critical section, it must be impossible to devise for them
such finite speeds, that the decision to determine which
one of them will enter its eritical section first is postponed
until eternity. In other words, constructions in which
“After you”-“After you”-blocking is still possible, although
improbable, are not to be regarded as valid solutions.

We beg the challenged reader to stop here for a while
and have a try himself, for this seems the only way to get
a feeling for the tricky consequences of the fact that each

Volume 8 / Number 9 / September, 1965

@LucT3o0

computer can only request one one-way message at a time.
And only this will make the veader realize to what extent
this problem is far from trivial.

The Solution

The common store consists of:

“Boolean array b, c[I:N]; integer k”

The integer k will satisfy 1 <k < N, blz) and eld]
will only be set by the ith computer; they will be inspected
by the others. It is assumed that all computers are started
well outside their critical sections with all Boolean arrays
mentioned set to true; thestarting value of k is immaterial.

The program for the i¢th computer (1 < ¢ < N) is:

“integer

1i0: bls] := false;
Lil: if k 5 i then
1i2: begin cli] := true;
Li3: if blk] then k :=1;
go to Lil
end
else

Ii4: begin c[i] := false;
for j := 1 step | uutil N do
if j 5% ¢ and not ¢[j] then go to Lil
end;
critical section;
cli] = true; bli] := true;
remainder of the cycle in which stopping is allowed;
2o to Li0”

The Proof

We start by observing that the solution is safe in the
sense that no two computers can be in their critical section
simultaneously. For the only way to enter its critical
section is the performance of the compound statement
L74 without jumping back to Lil, i.e., finding all other
¢’s true after having set its own ¢ to false.

The second part of the proof must show that no infinite
“After you”-“After you”-blocking can occur; i.e., when
none of the computers is in its ecritical section, of the
computers looping (i.e., jumping back to L71) at lcast
one—and therefore exactly one—will be allowed to enter
its critical scction in due time.

If the kth computer is not among the looping ones,
bik) will be true and the looping ones will all find k 7.
As a result one or more of them will find in L3 the Boolean
bk] true and therefore one ov more will decide to assign
“l = 7. After the first assignment “k 77, blk] be-
comes false and no new computers can decide again to
assign a new value to k. When all decided assignments to
k have been performed, k will point to one of the looping
computers and will not change its value for the time being,
i.e., until b[k] becomes true, viz., until the kth computer
has completed its critical section. As soon as the value of
k does not change any more, the kth computer will wait
(via the compound statement L74) until all other ¢’s arc
true, but this situation will certainly arise, if not already
present, because all other looping ones are forced to set
their ¢ true, as they will find k& 5 7. And this, the author
believes, completes the proof.

Communications of the ACM 569

#TDays2021

iTdays [nnovation, Programming, Technology @LucT30

is the problem solved?

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays Innovation, Programming, Technology @LucT30

docs.google.com/presentation/d/1rfdksmy28000c4EATMNP2dQE-vyf7GAMDbZKPjOAAMU/edit#slide=id.p

C++ development frustration: safety & security

q Concurrency safety: Races, deadlocks, performance bottlenecks

Debugging issues in my code

Memory safety: Bounds safety issues (read/write beyond the bounds of an object or array)

N
Memory safety: Use-after-delete/free (dangling pointers, iterators, spans, ...)

Security issues: other security issues (secret disclosure, vulnerabilities, exploits, ...) 1%

Memory safety: Forgot to delete/free (memory leaks) 1%
| l

Type safety: Using an object as the wrong type (unsafe downcasts, unsafe unions, ...) 10 %‘
| |
0% 5% 10% 15% 20% 25% 30 %

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

Old perspective

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays [nnovation, Programming, Technology @LucT30

building blocks

independent threads
synchronization primitives

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays [nnovation, Programming, Technology @LucT30

roads analogy

thread — road
sync primitive — intersection

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays Innovation, Programming, Technology

works well

for long roads
and few intersections

9th Edition | 10th - T1th of November 2021 | Cluj-Napoca

@LucT3o0

#1Days2021

iTdays [nnovation, Programmir @LucT30

e

- N
5 - X1 N L)
«* } R i

.

1

9th Edition | 10th- 11thof November 2021 | Cluj-Naposa " HTDays20

A

iTdays [nnovation, Programming, Technology @LucT30

synchronization issues

deadlock
livelock

starvation
priority inversion
busy waiting

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays [nnovation, Programming, Technology @LucT30

performance

far from expected

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays [nnovation, Programming, Technology @LucT30

threads

hard to think of them as independent

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays [nnovation, Programming, Technology @LucT30

primitives are not OK

threads
synchronization

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

. @LucTBo

Concurrency with tasks

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays [nnovation, Programming, Technology @LucT30

primitive

task = independent unit of work

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays Innovation, Programming, Technology @LucT30

primitive

task = independent unit of work

independent := does not depend on anything but its inputs

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays [nnovation, Programming, Technology @LucT30

primitive

task = independent unit of work

unit := doesn’t make sense to divide it

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays Innovation, Programming, Technology

— -

"

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca

A
>

@LucT3o0

#1Days2021

iTdays Innovation, Programming, Technology @LucT30

constraints
instead of locks

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays [nnovation, Programming, Technology @LucT30

new problem

encoding concurrency with tasks

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays Innovation, Programming, Technology @LucT30

overload 157

sl Refocusing Amdahl’s Law

| reiier, We siplore how o gst ing
most out of mulikinrsadsd cods.

[] [] [

high efficiency for Greedy algo
SOINE! Uvﬂjwlsl;u_a MOre .
sl high speedups
Hgruzicnss fur gbjzdt sumyzrison.

Commentoniyviviar

EICoUEIGANNoKsSay
A 3snslole agproacs o wriing
oodz Commenis

Mantras are useful — but
omitting vital information can
lead to. disaster,

51000 — 50025
— K SlO —_ 991

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays Innovation, Programming, Technology @LucT30

over |OCICI,

’ - e s gy g]

~The GlobalLlockdown of Locks
» W ddimlonsirie Wy you donot ngged muieEs Of I_ O C k S

y In nigh-lzvel cods, sines 2y Concurran elgeritum

sz (02 (inplermeriadsisly cnd sificienily wit Segis”,

\ global solution
C++20: A Simple Math Motulg)s A
5:.f'lgtfffﬁﬁfﬁ?e"fafnﬁ&igy"md ﬂ‘?gi . | " v .; L S Safety e n S u reC

4 .t. S
A Thorough Introllucuon o WO e R
to Apache Kafka

At A"
An introduction to Kaftkal Which s tHE S b LN v/ n O n ee O r O‘ (S
y {

heart of many companies’ archnt@cture

An Example Confined User Shell . |

Employing snaps to proide bespoke -
confined Linux environments

9th Edition | 10th - T1th of November 2021 | Cluj-Napoca #lTDays2021

iTdays Innovation, Programming, Technology @LucT30

overload

”PO cu‘rrencv Design Patterns Concu rrency

OCTOBER 2020 £4.50

®rchestrat|ng c sdtasksiusing'mutexes

= Design Patterns

Mndules: ABrief To'ur' ‘

building blocks for concurrent
Qvi‘iﬁlitﬁqiﬁlﬁime;ij@g 7 " L a Opl ications

I(aﬂ(t‘Eks Xplained -

Visualizing Katka Imost mlsunderstood
configuration semng 2

The Edge of c++

Every technology'has aboundary;.
we look at the “outer limits” of C++

poly::vector - A Vector for Polymorphic Objects

An efficient C++ container of polymorphic
objects, based on STL principles

A magazine of ACCU ISSN: 1354-3172

9th Edition | 10th - T1th of November 2021 | Cluj-Napoca #lTDays2021

iTdays [nnovation, Programming, Technology @LucT30

Bloomberg mosaic

VIR TUAL EVENT

Threads Considered Harmful

Lucian Radu Teodorescu

; 3 »,’.: 3«9»&
Wﬁg’m{ ¥

a& NTLR LA

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays [nnovation, Programming, Technology @LucT30

Designing Concurrent C++
Applications

Lucian Radu Teodorescu

https://bit.ly/2YnVG5U

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays [nnovation, Programming, Technology @LucT30

tasks

a new solution for concurrency

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays [nnovation, Programming, Technology

over|oad 162

APRIL 2021 £4.50

of Task Systems *

Concurrency canibe hard toget right;
tasks can help: - TR V)

L

Chepurni Mllllllllellllllls flll‘ s
Contemporary C++ 7 o Al

Showcasing-an approach that.uses cus‘tom
type identification and introspection. = .

<script>
A different look at some well-known plays,
setting them in a programmer’s world.

@LucT3o0

Composition and Decomposition
of Task Systems

top-down and bottom-up design

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays [nnovation, Programming, Technology @LucT30

composition of tasks

not the best solution

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

Async computations

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays [nnovation, Programming, Technology @LucT30

C++ executors

PO443: A Unified Executors Proposal for C++
https://wg21.link/p0443r14

P2300: std::execution
https://wg21.link/p2300r2

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

https://wg21.link/p0443r14
https://wg21.link/p2300r2

iTdays Innovation, Programming, Technology @LucT30

overload 165

OCTOBER 2021 £4.50

Executors: a Change
of Perspective

JebuggingArl

Eipleflie i el e of eeLeys,

SN senders/receivers
Stufftar Revisited ﬁ) - are a better

Personal projects can provide
valuable learning opportunities

e e | concurrency abstraction

Afterwood

Reflecting on reflection

A magazine of ACCU ISSN: 1354-3172

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays Innovation, Programming, Technology @LucT30

tasks

—

cannot directly pass values between tasks

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #|TDays2021

iTdays Innovation, Programming, Technology @LucT30

tasks

—

task body contains the call to the next task
what happens in case of error?

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays Innovation, Programming, Technology @LucT30

senders

set value(...)

set_error(...)

3 notification channels
wiring done by the framework

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays Innovation, Programming, Technology @LucT30

senders

set value(...)

set_error(...)

no performance penalty

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays [nnovation, Programming, Technology @LucT30

asynchronous computations

set value(...)

set_error(...)

rename senders into “async computations”

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays Innovation, Programming, Technology @LucT30

what can be a computation?

a small chunk of work
a task
a group of tasks
a group of task groups
the entire application

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays [nnovation, Programming, Technology @LucT30

computations

general solution to concurrency

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays [nnovation, Programming, Technology @LucT30

computations

compose better than tasks

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays Innovation, Programming, Technology @LucT30

computations hlerarchy

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays Innovation, Programming, Technology @LucT30

computation is an abstraction

allows us to incorporate concurrency in design

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

The future

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays [nnovation, Programming, Technology @LucT30

goals

no more thread safety issues
clean design for concurrency

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays [nnovation, Programming, Technology @LucT30

change of primitives

threads & locks

U
computations

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays [nnovation, Programming, Technology @LucT30

change of approach

synchronization

U
constraints between computations

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays [nnovation, Programming, Technology @LucT30

patterns & examples

make it teachable

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

iTdays [nnovation, Programming, Technology @LucT30

widespread use

concurrency # frustration

9th Edition | 10th - 11th of November 2021 | Cluj-Napoca #lTDays2021

: . @LucTBo

Tdays

#NewPerspectives

° °
* °
- +
> .\ .
accen t ure (r@ B os C H i RbOEAtIE?éEVELOPMENT ? BT S%:gi'[ﬁ::
- — 29\ col
- thoughtworks . METRCEI o o ects
»

Part of the

Ratiodata \ FLOW B TRADERS IIISg "‘fme
Group « o @
. . . L]

R INIVERSITATEA -
) BABES-BOLYAI cLuJ y / seasan

accesa

>*Connatix ING GARMIN. Growo RaRe>

UNIVERSITATEA Organlzer
TEHNICA

