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GAMES & QUIZZES THESAURUS WORD OF THE DAY FEATURES SHOP

Marom|JONCRE
Webster

Dictionary Thesaurus

deconstruction noun
e Save Word

de-con-struc-tion | \,dé—kan-'strak-shan@\

Definition of deconstruction

1 :aphilosophical or critical method which asserts that meanings, metaphysical
constructs, and hierarchical oppositions (as between key terms in a philosophical
or literary work) are always rendered unstable by their dependence on ultimately

arbitrary signifiers

also : an instance of the use of this method
/1 a deconstruction of the nature-culture opposition in Rousseau's work

: the analytic examination of something (such as a theory) often in order to
reveal its inadequacy

@LucT3o0



iINheritance in C++

heavily used

LLLLLL



why use Iinheritance?

model real-world concepts
reuse members
subtyping
iImplement an interface

@LucT3o0



Agendo

Simple problems Liskov Substitution  Inheritance vs

are hard Principle Composition
| | |

The grand IS-A  Inheritance and Putting things
confusion Friendship together

I @LucT3o0






problem statement

design two classes: and
operations: get/set dimensions, get areo

@LucT3o0



two solutions




Rectangle is-a Square

LLLLLL



class Square {

int size;
public:
int getSize() { size; }
void setSize(int x) { size = x; }
int getAreal() { size * size; }

}s

class Rectangle : public Square {
tnt width;

public:
int getWidth() { width; }
int getHeight() { Square::getSize(); }
voild setSize(int x) {
Square::setSize(x);
width = X;
}
void setWidth(int x) { width = x; }
void setHeight(int x) { Square::setSize(x); }
int getArea() { width * getSize(); }
};

I @LucT3o0



problems

mathematically incorrect
interface of IS polluted
LSP test broken

@LucT3o0



void increaseArea(Squareé square) {
auto oldArea = square.area();

square.setSize(square.getSize() 2);

auto newArea square.area( );
assert(newArea 4 oldArea);

I @LucT3o0



Square Is-a Rectangle

LLLLLL



class Rectangle {
int width, height;

public:
int getWidth() { width; }
int getHeight() { height; }
void setWidth(int x) { width X3 }
void setHeight(int x) { height X3 }
int getArea() { width* height; }
s
class Square: public Rectangle {
public:
int getSize() { Rectangle: :getWidth(); }
void setSize(int x) {
Rectangle: :setWidth(x);
Rectangle::setHeilght(x);
}
s

I @LucT3o0



fixes

mathematically seems correct
interface is less polluted
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problems

twice as much storage needed for
LSP test broken

@LucT3o0



void increaseAreaNew(Rectangled r) {
auto oldArea r.area( );

square.setWidth(r.getWidth() » 2);

auto newArea r.areaf( );
assert(newArea 2 oldArea);

I @LucT3o0



fix ]

make classes iImmutable
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class Rectangle {

protected:
tnt width, height;
public:
Rectangle(int w, int h) : width(w), height(h) {}
int getWidth() { width; }
int getHeight() { height; }
int getArea() { width*height; }
}s
class Square: public Rectangle {
public:
Square(int s) : Rectangle(s, s) {}
int getSize() { Rectangle: :getWidth(); }
}s

I @LucT3o0



problems

twice as much storage needed for
iInheritance doesn’t buy us anything

@LucT3o0



fix 2

remove inheritance
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class Rectangle {

protected:
tnt width, height;
public:
Rectangle(int w, int h) : width(w), height(h) {}
int getWidth() { width; }
int getHeight() { height; }
int getAreal() { width*height; }
}s
class Square {
int size;
public:
Square(int s) : size(s) {}
int getSize() { size; }
int getAreal() { size*size; }

}s

I @LucT3o0



The truth is that Squares and
Rectangles, even immutable
Squares and Rectangles,
ought not be associated by
inheritance

Robert C. Martin

I @LucT3o0




The class Square is not a square, it is
a program that represents a square.
The class Rectangle is not a
rectangle, it is a program that
represents a rectangle. |[..] The fact
that a square is a rectangle does not
mean that their representatives
share the ISA relationship.

Robert C. Martin

I @LucT3o0
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why use Iinheritance?
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problem: elevator system

a lot of buttons




option
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option
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option

@ Button

ButtonAppearance appearance
Functor command
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what is a Button?

elevator
arcade game
mechanical
keyboard
Ul button
old bell button

s S

I @LucT3o0




IN real world

concepts are building blocks of thoughts
fuzzy generalisations
by similitude

I @LucT3o0



IN real world

there is no “the Button”

I @LucT3o0



IN software

concepts are sets of instances
sharp distinctions
algebraically constructed

@LucT3o0



IS-A In real world

7 inside-button 1S=A button




|IS-A In software

1. reuse data layout & methods compdSTEG & typing

2. substitutability Liskov SulSEitation Principle

I @LucT3o0
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The "is-a” description of public inheritance is :
misunderstood when people use it to draw C++ COdll‘lg Stal‘ldal‘ds
irrelevant real-world analogies: A square
"is-a" rectangle (mathematically) but a
Square is not a Rectangle (behaviorally).

Consequently, instead of “is-a,” we prefer to : Herb Sutter
Andrei Alexandrescu

101 Rules, Guidelines, and Best Practices

say "works-like-a" (or, if you prefer,
"usable-as-a") to make the description less
prone to misunderstanding.

Herb Sutter, Andrei Alexandrescu

I @LucT30 C++ In-Depth Series + Bjarne Stroustrup



public inheritance
is substitutability

It has nothing to do with “real-world”
IS-A — nothing but a metaphor




why use Iinheritance?
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Liskov Substitution Principle

Subtype requirement: Let ¢(x) be a property provable about
objects x of type T. Then ¢(y) should be true for objects y of
type S where S is a subtype of T.

Barbara H. Liskov, Jeannette M., A behavioral notion of subtyping,
ACM Transactions on Programming Languages and Systems, 1994

@LucT3o0



Liskov Substitution Principle

If for each object ol of type S there is an object 02 of type T
such that for all programs P defined in terms of T, the behavior
of P Is unchanged when ol is substituted for 02 then Sis a
subtype of T.

Barbara H. Liskov, Data Abstraction and Hierarchy, 1988

@LucT3o0



Liskov Substitution Principle

If for each object ol of type S there is an object 02 of type T
such that for P defined in terms of T, the behavior
of P Is unchanged when ol is substituted for 02 then Sis a
subtype of T.

Barbara H. Liskov, Data Abstraction and Hierarchy, 1988

@LucT3o0



sounds good, but...

It doesn’t worl In a strict sense
hard to work In a relaxed sense
increases complexity, not reduce it

I @LucT3o0



LSP, sense

d(Base) = true
b (Derived) == true ?

d(x) = true, iff x == Base

LLLLLL



Liskov Substitution Principle

Subtype requirement: Let ¢(x) be a property provable about
objects x of type T. Then ¢(y) should be true for objects y of
type S where S is a subtype of T.

Barbara H. Liskov, Jeannette M., A behavioral notion of subtyping,
ACM Transactions on Programming Languages and Systems, 1994
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void lspFailure(Base& poly) {
assert( (poly) (Base));
}

I @LucT3o0



LSP and subtyping

mathematically, LSP doesn’t allow subtyping



LSP

$d(x) = behaves exactly like Base
returns the same things as Base does
calls exactly the same functions as Base does
same performance as Base
returns a subset of results that Base returns
has the same invariants as Base

@LucT3o0



what are the properties?

we have to survey all the code

—

LLLLLL



LSP can breadk

when changing Derived when changing Base/clients

If we don't know all the properties If we don't know all the assumptions
of Base for all derived

@LucT3o0



example |

struct Button {
void push(bool on) { isPushed_ = on; }
bool isPushed() { isPushed_; }

private:
bool isPushed {false};
s

// OLD code, in a different module

voild clientCode(Button& btn) {
btn.push(true);
assert(btn.isPushed()); // Should be ON

}

// NEW code
struct ButtonWithSafety : Button {
// Only push the button if the safety button is also pushed
void push(bool on) { Button::push(on safety_.1sPushed()); }

Button safety_;
};

I @LucT3o0



example 2

// OLD code, in some distant module, not directly visible near Button
struct ButtonWithTimer : Button {
void push(bool on) {
Button: :push(on);
// Button automatically unpressed after 1 second
(on)
timer.start(1ls, [this] { Button::push(false); })

}

// NEW code, based on observed behaviour of Button
void clientCode(Button& btn) {

btn.push(true);

oldVal btn. 1sPushed( );

std::this thread::sleep_for(1ls);

assert(oldVal btn.1sPushed()); // FAILURE

I @LucT3o0



source of problems

indirect coupling

| euene -




NOT an abstraction

abstraction reduces complexity




LSP

It doesn’t worl In a strict sense
hard to work In a relaxed sense
increases complexity, not reduce it

I @LucT3o0



why use Iinheritance?

LLLLLL






real-life analogy

children are closer than friends

LLLLLL



friendship impact

access to all members
(with a bit of care) dO€S NOt change interface of class

I @LucT3o0



inheritance impact

access to most members
can change class invariants
=> affects all clients

I @LucT3o0



@ FlyingThing

< flyingParams

o fly()
© engineStart()
© preparelLanding()

example 3 locsorteatosicd

@ Airplane @ Duck

o fly() © display()
© engineStart() o fly()

© preparelLanding() © quark()
© checkWings() @ swim()
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@ FlyingThing

< flyingParams

o fly()
© engineStart()
© preparelLanding()

change inertia e

@ Airplane @ Duck

o fly() © display()
© engineStart() o fly()

© preparelLanding() © quark()
© checkWings() @ swim()

@LucT3o0



Inheritance is
stronger than friendship







A pox on the ISA relationship.
It's been misleading and
damaging for decades.

Inheritance is not ISA.
Inheritance is the redeclaration
of functions and variables
In a sub-scope.

No more. No less.

Robert C. Martin

I @LucT3o0




INheritance

redeclaration

IS 2l iVl el Ve
SAS LA nry
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composition

redeclaration can be abstracted out

I @LucT3o0
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Inheritance is often overused,
even by experienced developers.  (C4-4- coding Standards

A sound rule of software 101 Rules, Guidelines, and Best Practices
engineering is to minimize
coupling: If a relationship can be Herb Sutter
Andrel Alexandrescu

expressed in more than one way,
use the weakest relationship
that's practical.

Herb Sutter, Andrei Alexandrescu

I @LucT3o C++ In-Depth Series « Bjarne Stroustrup



prefer composition
to Inheritance




Meeting C++ 2021

Summary

Type Erasure 1s ...

¢« .. atemplated constructor plus ...

¢ ..acompletely non-virtual interface; Mg 1
¢ .. External Polymorphism + Bridge + Prototype; ¥ ' |
¢ .. one of the most interesting design patterns today.

b
Type Erasure ...

.. significantly reduces dependencies; |
.. enables value semantics; © Klaus Igiberger
.. improves performance;

.. improves readability and comprehensibility;

.. €ases maintenance,

.. 18 for good reason the default choice for dynamic
polymorphism in many other languages.

© Klaus Iglberger's Screen

Klaus Iglberger, Breaking Dependencies: Type Erasure - A Design Analysis
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Klaus Iglberger, Breaking Dependencies: Type Erasure - A Design Analysis
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why use Iinheritance?
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When to use and when to avoid inheritance




why use Iinheritance?
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inheritance

use with interfaces
replace by composition

I @LucT3o0



INnterfaces

ok with LSP
SOLID player




example

@LucT3o0

o display()
o fly()
@ quack()

@ Duck

< flyBehavior
< quackBehavior

© display()

o fly()

@ quack()

@ swim()

< changeFlyBehavior()

< changeQuackBehavior()

o display()

@ display() o fly(
© fly0 © quack()
© quack( @ swim()

@ ElectronicToyDuck

© display()
o fly()
© quack()




@ Duck

@ display()
o fly()
@ quack() v
© swim()
».
@ MallardDuck @ RedheadDuck @ WD HEADIEE @ ElectronicToyDuck
O flyBehavior: BirdFlyBehavior O flyBehavior: BirdFlyBehavior =) Wy Senaiens NolREeevien O flyBehavior: NoFlyBehavior

O quackBehavior: ArtificialQuacking

0O quackBehavior: DuckQuacking 0O quackBehavior: DuckQuacking O quackBehavior: ArtificialQuacking

@ display() @ display() 8 ?]if()play() @ display()

o fly() o fly() o fly(
@ quack() © quack() g gvl:/?rﬂz)() © quack()

@BirdFIyBehavior @DuckQuacking ' @ArtiﬁciaIQuacking




@Displayable

© display()

A

@ MallardDuck @ RubberDuck

O flyBehavior: BirdFlyBehavior O flyBehavior: BirdFlyBehavior
0 quackBehavior: DuckQuacking 0O quackBehavior: DuckQuacking

@ ElectronicToyDuck

O quackBehavior: ArtiticialQuacking 0O quackBehavior: ArtificialQuacking

e display( o display( ° 3&'%" ® display()
o fly() o fly() = dudl @ quack()
@ quack() © quack()

@ DuckQuacking ' ' @ArtiﬁcialQuacking

@LucT3o0



interface guidelines

one for each type of client
iInvariants directed by the clients

I @LucT3o0



iInterfaces decouple

concrete classes from users




why use Iinheritance?
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inheritance is

.. full of iInconsistencies
..overrated
.. overused

I @LucT3o0
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