, Vo
3 .1."0&".;&_ ¥

i, ('\‘
V)
%Y

LN

A\ e+
\¥ .,1\

\J
A
=

~—

‘lv:.i

T . X bj“ﬁ

4
)
SHEL
s

R

INnheritance

iNg

Deconstruct

/

g\"".vo‘ S
1

INECPP

A F:’."IE
N
S “ <
\ ’*‘l‘& ik
\qﬁ,’
»
47
\‘3‘
b=
¥ ki
%
n’/‘
an
s d
&
[}

—
A :»’ @\'(A
4D
£ 8
i
%y 3
>
>
meet

PSS =S
.;;“.'l " =
BT A 5

1
k . % U
W

e e
AN
(ri/\

<A

;\)'
2
R

ro/pres/2021

/i
[]

[)5 t'-’” ;
NA’

¢
A ‘\' X
P

N
f

lucteo

e =

Wil TP T Gl i i e R SN

B2 T e ke T A = -

ot - ¥ Gm*. .n....l....... P = re lemg 'y mﬂl. . |mﬂ.ﬂl.*' i ¢ e -

o .-*!..m-u.t.t.r......ﬂ.t._ P A e - — .

R — s a e I T ™ o
m e] Ty - %__nn-..l = A il E i .

....t_l.._.t: - [S e ol uf &

o

, ; T I
g 1 NS N

~ :
ey st o
: e i TR Ty .
P i — - Y
o e e R S _....ﬁ..i_.ﬂ..u' e |
0 _ o

@LucT30

@LucT3o0

GAMES & QUIZZES THESAURUS WORD OF THE DAY FEATURES SHOP

Marom|JONCRE
Webster

Dictionary Thesaurus

deconstruction noun
e Save Word

de-con-struc-tion | \,dé—kan-'strak-shan@\

Definition of deconstruction

1 :aphilosophical or critical method which asserts that meanings, metaphysical
constructs, and hierarchical oppositions (as between key terms in a philosophical
or literary work) are always rendered unstable by their dependence on ultimately

arbitrary signifiers

also : an instance of the use of this method
/1 a deconstruction of the nature-culture opposition in Rousseau's work

: the analytic examination of something (such as a theory) often in order to
reveal its inadequacy

@LucT3o0

iINheritance in C++

heavily used

LLLLLL

why use Iinheritance?

model real-world concepts
reuse members
subtyping
iImplement an interface

@LucT3o0

Agendo

Simple problems Liskov Substitution Inheritance vs

are hard Principle Composition
| | |

The grand IS-A Inheritance and Putting things
confusion Friendship together

I @LucT3o0

problem statement

design two classes: and
operations: get/set dimensions, get areo

@LucT3o0

two solutions

Rectangle is-a Square

LLLLLL

class Square {

int size;
public:
int getSize() { size; }
void setSize(int x) { size = x; }
int getAreal() { size * size; }

}s

class Rectangle : public Square {
tnt width;

public:
int getWidth() { width; }
int getHeight() { Square::getSize(); }
voild setSize(int x) {
Square::setSize(x);
width = X;
}
void setWidth(int x) { width = x; }
void setHeight(int x) { Square::setSize(x); }
int getArea() { width * getSize(); }
};

I @LucT3o0

problems

mathematically incorrect
interface of IS polluted
LSP test broken

@LucT3o0

void increaseArea(Squareé square) {
auto oldArea = square.area();

square.setSize(square.getSize() 2);

auto newArea square.area();
assert(newArea 4 oldArea);

I @LucT3o0

Square Is-a Rectangle

LLLLLL

class Rectangle {
int width, height;

public:
int getWidth() { width; }
int getHeight() { height; }
void setWidth(int x) { width X3 }
void setHeight(int x) { height X3 }
int getArea() { width* height; }
s
class Square: public Rectangle {
public:
int getSize() { Rectangle: :getWidth(); }
void setSize(int x) {
Rectangle: :setWidth(x);
Rectangle::setHeilght(x);
}
s

I @LucT3o0

fixes

mathematically seems correct
interface is less polluted

@LucT3o0

problems

twice as much storage needed for
LSP test broken

@LucT3o0

void increaseAreaNew(Rectangled r) {
auto oldArea r.area();

square.setWidth(r.getWidth() » 2);

auto newArea r.areaf();
assert(newArea 2 oldArea);

I @LucT3o0

fix]

make classes iImmutable

I @LucT3o0

class Rectangle {

protected:
tnt width, height;
public:
Rectangle(int w, int h) : width(w), height(h) {}
int getWidth() { width; }
int getHeight() { height; }
int getArea() { width*height; }
}s
class Square: public Rectangle {
public:
Square(int s) : Rectangle(s, s) {}
int getSize() { Rectangle: :getWidth(); }
}s

I @LucT3o0

problems

twice as much storage needed for
iInheritance doesn’t buy us anything

@LucT3o0

fix 2

remove inheritance

I @LucT3o0

class Rectangle {

protected:
tnt width, height;
public:
Rectangle(int w, int h) : width(w), height(h) {}
int getWidth() { width; }
int getHeight() { height; }
int getAreal() { width*height; }
}s
class Square {
int size;
public:
Square(int s) : size(s) {}
int getSize() { size; }
int getAreal() { size*size; }

}s

I @LucT3o0

The truth is that Squares and
Rectangles, even immutable
Squares and Rectangles,
ought not be associated by
inheritance

Robert C. Martin

I @LucT3o0

The class Square is not a square, it is
a program that represents a square.
The class Rectangle is not a
rectangle, it is a program that
represents a rectangle. |[..] The fact
that a square is a rectangle does not
mean that their representatives
share the ISA relationship.

Robert C. Martin

I @LucT3o0

; \ ' NS
rs Hut introduce a transiion poink in the AR\ at winich poink Conste
Spedification in e same class),

fine-grained seue .
gle and s

ked ihis is really to implement the Reditan
favorite varant. | .

i E ‘l:,.t'l_,-l'j._'i:. i -.t'n..'.-"-

the obD°

Pre further changes 0oL
* II

1 . To
ISA is useful when trying to model
ezel}; :
° the subclassing yut on averty naive Wdeas about glale assianment...
real world relations to make class)
h o h . o o, o Riarn Konestabo Says:
N 3tn, 2009 at 6l am
I e rq rC I e S I n t u I t |Ve J E:::Tw et ‘: 1 30 e i B make dass erarchies innaitive, hgt E\‘&.&Eﬁ:'::f :lru
i far will break. Tnying W0 build great towers of logic seems il &2

metaphors, and metaphors, it extended 100

noble goal, but can quickly become 2 \oity task of futiity.
and rectangies. Any rectandl

the pox should not e

e class will not serve all

but ,
There is a context and a usage 1o these sQUAres . : . - inder.
ourposes. \f | bend a rectangle around a pas el Yine shifted in a 3rd dimension, | might get a o

q n d m e t q p h O r S I, Would | want to extend the Rectangle class 10 eXpt

Using type to denote an ephemeral guality seems 10 Me
subclass would be for it to enforce its “sguaredness an:‘:t |
single responsibility principle, so be it Practicality over principles.

st thiis? Onby if | get paid by the \evels of inheritance.
w0 be extremely silly. The whole poink of a square
if the siplest way to do that is o violate the

Peter B Says:

September 14th, 2009 at 4:03 am
gle, is 2 value object, so all this goes away when you

W's a silly example though. A square, or a rectan

realise that.
a sguarerectangle, you have a different square|rectangle, not the

Think about it, you change the side of
same one with a different side.

Bjern Konestabo Says:
September 14th, 2009 at 8:22 am

Bjorn Konestabo
And what about the rectangle whose sides happen to be the of same length? It's clearly a sguare yet it
doesn't have the Square type. Very silly indeed.

Samus_ Says:
September 14th, 2009 at 4:29 pm

is_square(self):
"' coz a square is not a new object but a rectangle with a property

return self.width == self.height

@LucT30
also, markup-fail

why use Iinheritance?

~\tre
UVLQ

9%

O
Q
(-
G
(-
O
op)
D)
0,

. (.

@LucT3o0

problem: elevator system

a lot of buttons

option

@LucT3o0

option

@LucT3o0

option

@ Button

ButtonAppearance appearance
Functor command

@LucT3o0

@LucT3o0

what is a Button?

elevator
arcade game
mechanical
keyboard
Ul button
old bell button

s S

I @LucT3o0

IN real world

concepts are building blocks of thoughts
fuzzy generalisations
by similitude

I @LucT3o0

IN real world

there is no “the Button”

I @LucT3o0

IN software

concepts are sets of instances
sharp distinctions
algebraically constructed

@LucT3o0

IS-A In real world

7 inside-button 1S=A button

|IS-A In software

1. reuse data layout & methods compdSTEG & typing

2. substitutability Liskov SulSEitation Principle

I @LucT3o0

vy v

The "is-a” description of public inheritance is :
misunderstood when people use it to draw C++ COdll‘lg Stal‘ldal‘ds
irrelevant real-world analogies: A square
"is-a" rectangle (mathematically) but a
Square is not a Rectangle (behaviorally).

Consequently, instead of “is-a,” we prefer to : Herb Sutter
Andrei Alexandrescu

101 Rules, Guidelines, and Best Practices

say "works-like-a" (or, if you prefer,
"usable-as-a") to make the description less
prone to misunderstanding.

Herb Sutter, Andrei Alexandrescu

I @LucT30 C++ In-Depth Series + Bjarne Stroustrup

public inheritance
is substitutability

It has nothing to do with “real-world”
IS-A — nothing but a metaphor

why use Iinheritance?

MAAAI FA”I_\AIAFIA f\f\hf\f\h'l'(\
IMIVUCT TOUUl VWWUITU UUTITUU VLo

@LucT3o0

Liskov Substitution Principle

Subtype requirement: Let ¢(x) be a property provable about
objects x of type T. Then ¢(y) should be true for objects y of
type S where S is a subtype of T.

Barbara H. Liskov, Jeannette M., A behavioral notion of subtyping,
ACM Transactions on Programming Languages and Systems, 1994

@LucT3o0

Liskov Substitution Principle

If for each object ol of type S there is an object 02 of type T
such that for all programs P defined in terms of T, the behavior
of P Is unchanged when ol is substituted for 02 then Sis a
subtype of T.

Barbara H. Liskov, Data Abstraction and Hierarchy, 1988

@LucT3o0

Liskov Substitution Principle

If for each object ol of type S there is an object 02 of type T
such that for P defined in terms of T, the behavior
of P Is unchanged when ol is substituted for 02 then Sis a
subtype of T.

Barbara H. Liskov, Data Abstraction and Hierarchy, 1988

@LucT3o0

sounds good, but...

It doesn’t worl In a strict sense
hard to work In a relaxed sense
increases complexity, not reduce it

I @LucT3o0

LSP, sense

d(Base) = true
b (Derived) == true ?

d(x) = true, iff x == Base

LLLLLL

Liskov Substitution Principle

Subtype requirement: Let ¢(x) be a property provable about
objects x of type T. Then ¢(y) should be true for objects y of
type S where S is a subtype of T.

Barbara H. Liskov, Jeannette M., A behavioral notion of subtyping,
ACM Transactions on Programming Languages and Systems, 1994

@LucT3o0

void lspFailure(Base& poly) {
assert((poly) (Base));
}

I @LucT3o0

LSP and subtyping

mathematically, LSP doesn’t allow subtyping

LSP

$d(x) = behaves exactly like Base
returns the same things as Base does
calls exactly the same functions as Base does
same performance as Base
returns a subset of results that Base returns
has the same invariants as Base

@LucT3o0

what are the properties?

we have to survey all the code

—

LLLLLL

LSP can breadk

when changing Derived when changing Base/clients

If we don't know all the properties If we don't know all the assumptions
of Base for all derived

@LucT3o0

example |

struct Button {
void push(bool on) { isPushed_ = on; }
bool isPushed() { isPushed_; }

private:
bool isPushed {false};
s

// OLD code, in a different module

voild clientCode(Button& btn) {
btn.push(true);
assert(btn.isPushed()); // Should be ON

}

// NEW code
struct ButtonWithSafety : Button {
// Only push the button if the safety button is also pushed
void push(bool on) { Button::push(on safety_.1sPushed()); }

Button safety_;
};

I @LucT3o0

example 2

// OLD code, in some distant module, not directly visible near Button
struct ButtonWithTimer : Button {
void push(bool on) {
Button: :push(on);
// Button automatically unpressed after 1 second
(on)
timer.start(1ls, [this] { Button::push(false); })

}

// NEW code, based on observed behaviour of Button
void clientCode(Button& btn) {

btn.push(true);

oldVal btn. 1sPushed();

std::this thread::sleep_for(1ls);

assert(oldVal btn.1sPushed()); // FAILURE

I @LucT3o0

source of problems

indirect coupling

| euene -

NOT an abstraction

abstraction reduces complexity

LSP

It doesn’t worl In a strict sense
hard to work In a relaxed sense
increases complexity, not reduce it

I @LucT3o0

why use Iinheritance?

LLLLLL

real-life analogy

children are closer than friends

LLLLLL

friendship impact

access to all members
(with a bit of care) dO€S NOt change interface of class

I @LucT3o0

inheritance impact

access to most members
can change class invariants
=> affects all clients

I @LucT3o0

@ FlyingThing

< flyingParams

o fly()
© engineStart()
© preparelLanding()

example 3 locsorteatosicd

@ Airplane @ Duck

o fly() © display()
© engineStart() o fly()

© preparelLanding() © quark()
© checkWings() @ swim()

@LucT3o0

@ FlyingThing

< flyingParams

o fly()
© engineStart()
© preparelLanding()

change inertia e

@ Airplane @ Duck

o fly() © display()
© engineStart() o fly()

© preparelLanding() © quark()
© checkWings() @ swim()

@LucT3o0

Inheritance is
stronger than friendship

A pox on the ISA relationship.
It's been misleading and
damaging for decades.

Inheritance is not ISA.
Inheritance is the redeclaration
of functions and variables
In a sub-scope.

No more. No less.

Robert C. Martin

I @LucT3o0

INheritance

redeclaration

IS 2l iVl el Ve
SAS LA nry

@LucT3o0

composition

redeclaration can be abstracted out

I @LucT3o0

vy v

Inheritance is often overused,
even by experienced developers. (C4-4- coding Standards

A sound rule of software 101 Rules, Guidelines, and Best Practices
engineering is to minimize
coupling: If a relationship can be Herb Sutter
Andrel Alexandrescu

expressed in more than one way,
use the weakest relationship
that's practical.

Herb Sutter, Andrei Alexandrescu

I @LucT3o C++ In-Depth Series « Bjarne Stroustrup

prefer composition
to Inheritance

Meeting C++ 2021

Summary

Type Erasure 1s ...

¢« .. atemplated constructor plus ...

¢ ..acompletely non-virtual interface; Mg 1
¢ .. External Polymorphism + Bridge + Prototype; ¥ ' |
¢ .. one of the most interesting design patterns today.

b
Type Erasure ...

.. significantly reduces dependencies; |
.. enables value semantics; © Klaus Igiberger
.. improves performance;

.. improves readability and comprehensibility;

.. €ases maintenance,

.. 18 for good reason the default choice for dynamic
polymorphism in many other languages.

© Klaus Iglberger's Screen

Klaus Iglberger, Breaking Dependencies: Type Erasure - A Design Analysis

@LucT3o0

|.n\mlll 13 s & o ahin B ey

Klaus Iglberger, Breaking Dependencies: Type Erasure - A Design Analysis

I @LucT3o0

why use Iinheritance?

VL 16 MAth\rO
I NV \AJI 1T 1T INVITINVI VD

LLLLLL

When to use and when to avoid inheritance

why use Iinheritance?

~\tre
UVLQ

composition

)

O
Q
¢
G
¢-
O
0

_J
0,

.

N
'J

©
Implement an interface

\ W 4
J

11T
W AN G

@LucT3o0

inheritance

use with interfaces
replace by composition

I @LucT3o0

INnterfaces

ok with LSP
SOLID player

example

@LucT3o0

o display()
o fly()
@ quack()

@ Duck

< flyBehavior
< quackBehavior

© display()

o fly()

@ quack()

@ swim()

< changeFlyBehavior()

< changeQuackBehavior()

o display()

@ display() o fly(
© fly0 © quack()
© quack(@ swim()

@ ElectronicToyDuck

© display()
o fly()
© quack()

@ Duck

@ display()
o fly()
@ quack() v
© swim()
».
@ MallardDuck @ RedheadDuck @ WD HEADIEE @ ElectronicToyDuck
O flyBehavior: BirdFlyBehavior O flyBehavior: BirdFlyBehavior =) Wy Senaiens NolREeevien O flyBehavior: NoFlyBehavior

O quackBehavior: ArtificialQuacking

0O quackBehavior: DuckQuacking 0O quackBehavior: DuckQuacking O quackBehavior: ArtificialQuacking

@ display() @ display() 8 ?]if()play() @ display()

o fly() o fly() o fly(
@ quack() © quack() g gvl:/?rﬂz)() © quack()

@BirdFIyBehavior @DuckQuacking ' @ArtiﬁciaIQuacking

@Displayable

© display()

A

@ MallardDuck @ RubberDuck

O flyBehavior: BirdFlyBehavior O flyBehavior: BirdFlyBehavior
0 quackBehavior: DuckQuacking 0O quackBehavior: DuckQuacking

@ ElectronicToyDuck

O quackBehavior: ArtiticialQuacking 0O quackBehavior: ArtificialQuacking

e display(o display(° 3&'%" ® display()
o fly() o fly() = dudl @ quack()
@ quack() © quack()

@ DuckQuacking ' ' @ArtiﬁcialQuacking

@LucT3o0

interface guidelines

one for each type of client
iInvariants directed by the clients

I @LucT3o0

iInterfaces decouple

concrete classes from users

why use Iinheritance?

~\tre
UVLQ

composition

)

O
Q
¢
G
¢-
O
0

_J
0,

.

N
'J

©
Implement an interface

\ W 4
J

11T
W AN G

@LucT3o0

inheritance is

.. full of iInconsistencies
..overrated
.. overused

I @LucT3o0

."é.
)

i
‘W/

X
3N

L)

{

s So A 0h
Bid i i g
A N : @ iR, 8

&Wub%?wrwi s i -.n“..?
s ol 9
¥ v&@%ﬁf s

/ SV _
o7 B
e

f/r

U
.

RN NG
‘. e 2N ,

: : 1> oy
) +.u,.,,,. | ‘ol @B

k
71\
2
m.a’
)
y
1
3 ,... -
\ ~

L \

-
Ve

N g o.,,_a..mnv.u» w«.f?,
BRI A\ K

) ..r N
% s e
-3 P o
. B AN
S > v‘“‘ /,
A z A
L) -~
& = - h‘\ '
-l] .
Y, P

¥ ey
> s o
) J

¢ vA”’V. B g -
.ﬁ.ﬁ@ [

lucteo.ro

Thank You

y @lucl 30

