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Hillel Wayne

BLOG PROJECTS TALKS CONSULTING ABOUT BOOKS NEWSLETTER

ARE WE REALLY ENGINEERS?

B Jan 18, 2021

This is part one of the Crossover Project. Part two is here and part three is here.

| sat in front of Mat, idly chatting about tech and cuisine. Before now, | had known him
mostly for his cooking pictures on Twitter, the kind that made me envious of
suburbanites and their 75,000 BTU woks. But now he was the test subject for my new
project, to see If it was going to be fruitful or a waste of time.

“What's your job?"

“Right now I'm working on microservices for a social media management platform.”

“And before that?”

“Geological engineering. A lot of open pit mining, some amount of underground tunnel
work. Hydropower work. Earth embankment dams because they come along with
mines.”

He told me a story about his old job. His firm was hired to analyze a block cave in
British Columbia. Block caves are a kind of mining project where you dig tunnels
underneath the deposit to destabilize it. The deposit slowly collapses and leaks
material into the tunnels, and then “you just print money” as Mat called it. The big
problem here? The block cave was a quarter mile under a rival company’s toxic waste
dump. “In the event of an earthquake, could the waste flood the mine and kill
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https://hillelwayne.com/post/are-we-really-engineers/

Mary Shaw

Progress Towards an

Engineering Discipline of

Software




engineering

creating cost-effective solutions
.. to practical problems
.. by applying scientific knowledge
.. building things
.. In the service of mankind

@LucT3o0



engineering

enabled ordinary people to do things
that formerly required virtuosos
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predicting

quality
completion time
scope




knowledge

mostly empirical




sclentific principles

assume that you are wrong
iteratively improve — limit the impact of mistakes
always measure
stop when “good enough”
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moon landing

orbiting Earth
lunar orbit
lunar iImpact
lunar landing
human lunar landing



| believe that this nation should

commit itself to achieving the
goal, before this decade is out, of
landing a man on the moon and
returning him safely to the earth

John F. Kennedy
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however



https://blog.ploeh.dk/2020/05/25/wheres-the-science/
https://www.youtube.com/watch?v=WELBnE33dpY

Sw Eng vs Developers




name

discipline: Software Engineering

Software Engineers — like other engineers
Developers — like Real estate developers?
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approach

Software Engineers Developers
use scientific methods ad-hoc methods
structured unstructured

predictable results unpredictable results
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use of knowledge

Software Engineers Developers

contextualized prior knowledge magic art?

@LucT3o0



iterations

Software Engineers Developers

iImprove knowledge finish “disconnected” features
steps towards vision altering vision
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building good software

Software Engineers Developers

ordinary people VIrtuosos






Engineering the Code
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// Next, check if the panel has moved to the other side of another panel.
for (size_t 1 = 0; i < expanded_panels_.size(); ++1) {
Panel *panel = expanded_panels_[1].get();
LT (center_x <= panel->cur_panel_center() ||
i == expanded_panels_.size() - 1) {
LT (panel !'= fixed _panel) {
// If 1t has, then we reorder the panels.
ref_ptr<Panel> ref = expanded_panels_[fixed_index];:
expanded_panels_.erase(expanded_panels_.begin() + fixed_tindex);
if (1 < expanded_panels_.size()) {
expanded_panels_. insert(expanded_panels_.begin() + 1, ref);
} else {
expanded_panels_.push_back(ref);

}
}

break;

}
}
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sSW eng

// Next, check if the panel has moved to the left side of another panel.
auto f = begin(expanded_panels_) + fixed_tindex;
auto p = lower_bound(begin(expanded_panels_), f, center_x,

[ 1(const ref_ptr<Panel> &e, int x) { return e->cur_panel_center() < x; });
// If 1t has, then we reorder the panels.
rotate(p, f, T + 1);
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sSW eng

It> // I models RandomAccesslIterator
slide(It first, It last, It pos) palr<It, It

{
(pos first) { pos, rotate(pos, first, last) }
(last POS ) { rotate(first, last, pos), pos }
{ first, last }
}
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more Info

Sean Parent — C++ Seadsoning, Going Native 2013



https://www.youtube.com/watch?v=W2tWOdzgXHA

computing mean, median

mean = average of the data values
median = middle number Iin the ordered set of data
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naive implementation

mean ( arr[], n) {
sum 0
( 1 0: 1 n: i++)
Sum arr[i]
sum n
I3
median( arrl], n) {

std: :sort(arr, arr n)
(n 2 0)
Eldd i 2 1] arr[n 21) 2
arr[n 2 ]
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using STL algorithms

mean ( arr[], n) {
std: :reduce(arr, arr n) N
}
mean_par( arr[], n) {
std: :reduce( , arr, arr n) n
}
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using STL algorithms

median( arr[], n) {

mid N 2
std: :nth_element(arr, arr muwd, arr n)
(N 2 1)
arr[mid]
{

prev std: :max_element(arr, arr mid)
std: :midpoint(prev, arr[mid])
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percentile calculation

percentile( arr[], n, rank = 90) {
t (rank) 100.0f (N 1)
idx_down (t)

std: :nth_element(arr, arr tdx_down, arr n)
Llower arr[ tdx_down]
( tdx_down n 1) {

upper std: :min_element(arr 1dx_down 1, arr n)
std::lerp(lower, upper, t (1dx_down))
}
Llower
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choosing containers

iINnsert N elements in the front of a container
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iInsert front, vector & list

std: :vector C
( 1=0; i<N; i1++ )
c.insert(c.begun(), 1)

std::list C
( i=0; i<N; i++ )
c.push_front(1i)
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push_back results
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bottom line

know your algorithms
know your data structures

perform experiments
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Engineering the Architecture
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dynamics

features iIncrementally added

quality attributes always changing
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engineering drchitecture

set goals for quality attributes
constantly measure important QAs
dedicate work for improving QAs when needed
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engineering drchitecture




performance testability

A 7

usability h

# security

4 Y

availability modifiability
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Engineering the Processes




mMain problems

software design is unpredictable
QAs can be fragile

I @LucT3o0



waterfall

big design upfront
no iterations
results often misaligned with the goals
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common agile

small sprints
deliver functionality in each iteration
upfront design is innexistent
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oboth are wrong




controlled iterative

learn through iterations
measure, meadsure, measure
constantly improve design
reduce risks
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engineering

Initial guesses are wrong
iImproved with each iteration
empirical approach
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another take:

initial state high risk

project completed Zero risk
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process goal

iteratively decrease risk

LLLLLL



ideal project

100
75 .
-
2 50
25
0 : : : : :
Start Ilter 1 Iter 2 Ilter 3 Ilter 4 Ilter 5 Finish
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tips

constantly identify risks
mitigate risks asap
spend design time around risks
prototype around risks
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NO risk == success
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Conclusions




engineering

know what engineering Iis
knowledge — software
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use engineering

IN code
for architecture
with the processes
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software engineer
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Love It
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