THE DEVELOPERS

Lucian Teodorescu

Software Engineers
vs Uevelopers

Software

Lucleo : :
Engineering

I
1
."'

-

@LucT30 lucteo.ro/pres/2022-thedev

Software Engineering

Software Engineering

I @LucT3o0

Hillel Wayne

BLOG PROJECTS TALKS CONSULTING ABOUT BOOKS NEWSLETTER

ARE WE REALLY ENGINEERS?

B Jan 18, 2021

This is part one of the Crossover Project. Part two is here and part three is here.

| sat in front of Mat, idly chatting about tech and cuisine. Before now, | had known him
mostly for his cooking pictures on Twitter, the kind that made me envious of
suburbanites and their 75,000 BTU woks. But now he was the test subject for my new
project, to see If it was going to be fruitful or a waste of time.

“What's your job?"

“Right now I'm working on microservices for a social media management platform.”

“And before that?”

“Geological engineering. A lot of open pit mining, some amount of underground tunnel
work. Hydropower work. Earth embankment dams because they come along with
mines.”

He told me a story about his old job. His firm was hired to analyze a block cave in
British Columbia. Block caves are a kind of mining project where you dig tunnels
underneath the deposit to destabilize it. The deposit slowly collapses and leaks
material into the tunnels, and then “you just print money” as Mat called it. The big
problem here? The block cave was a quarter mile under a rival company’s toxic waste
dump. “In the event of an earthquake, could the waste flood the mine and kill

AAAAAAAAAA e T AL | o= = e R A o A ' A Y == 8 A=A e P R == naR R s | R A

https://hillelwayne.com/post/are-we-really-engineers/

Mary Shaw

Progress Towards an

Engineering Discipline of

Software

engineering

creating cost-effective solutions
.. to practical problems
.. by applying scientific knowledge
.. building things
.. In the service of mankind

@LucT3o0

engineering

enabled ordinary people to do things
that formerly required virtuosos

@LucT3o0

I @LucT3o0

I @LucT3o0

predicting

quality
completion time
scope

knowledge

mostly empirical

sclentific principles

assume that you are wrong
iteratively improve — limit the impact of mistakes
always measure
stop when “good enough”

@LucT3o0

moon landing

orbiting Earth
lunar orbit
lunar iImpact
lunar landing
human lunar landing

| believe that this nation should

commit itself to achieving the
goal, before this decade is out, of
landing a man on the moon and
returning him safely to the earth

John F. Kennedy

I @LucT3o0

however

https://blog.ploeh.dk/2020/05/25/wheres-the-science/
https://www.youtube.com/watch?v=WELBnE33dpY

Sw Eng vs Developers

name

discipline: Software Engineering

Software Engineers — like other engineers
Developers — like Real estate developers?

@LucT3o0

approach

Software Engineers Developers
use scientific methods ad-hoc methods
structured unstructured

predictable results unpredictable results

@LucT3o0

use of knowledge

Software Engineers Developers

contextualized prior knowledge magic art?

@LucT3o0

iterations

Software Engineers Developers

iImprove knowledge finish “disconnected” features
steps towards vision altering vision

@LucT3o0

building good software

Software Engineers Developers

ordinary people VIrtuosos

Engineering the Code

I. Ul rearrange

—)

aev

// Next, check if the panel has moved to the other side of another panel.
for (size_t 1 = 0; i < expanded_panels_.size(); ++1) {
Panel *panel = expanded_panels_[1].get();
LT (center_x <= panel->cur_panel_center() ||
i == expanded_panels_.size() - 1) {
LT (panel !'= fixed _panel) {
// If 1t has, then we reorder the panels.
ref_ptr<Panel> ref = expanded_panels_[fixed_index];:
expanded_panels_.erase(expanded_panels_.begin() + fixed_tindex);
if (1 < expanded_panels_.size()) {
expanded_panels_. insert(expanded_panels_.begin() + 1, ref);
} else {
expanded_panels_.push_back(ref);

}
}

break;

}
}

I @LucT3o0

sSW eng

// Next, check if the panel has moved to the left side of another panel.
auto f = begin(expanded_panels_) + fixed_tindex;
auto p = lower_bound(begin(expanded_panels_), f, center_x,

[1(const ref_ptr<Panel> &e, int x) { return e->cur_panel_center() < x; });
// If 1t has, then we reorder the panels.
rotate(p, f, T + 1);

I @LucT3o0

sSW eng

It> // I models RandomAccesslIterator
slide(It first, It last, It pos) palr<It, It

{
(pos first) { pos, rotate(pos, first, last) }
(last POS) { rotate(first, last, pos), pos }
{ first, last }
}

I @LucT3o0

more Info

Sean Parent — C++ Seadsoning, Going Native 2013

https://www.youtube.com/watch?v=W2tWOdzgXHA

computing mean, median

mean = average of the data values
median = middle number Iin the ordered set of data

@LucT3o0

naive implementation

mean (arr[], n) {
sum 0
(1 0: 1 n: i++)
Sum arr[i]
sum n
I3
median(arrl], n) {

std: :sort(arr, arr n)
(n 2 0)
Eldd i 2 1] arr[n 21) 2
arr[n 2]

I @LucT3o0

using STL algorithms

mean (arr[], n) {
std: :reduce(arr, arr n) N
}
mean_par(arr[], n) {
std: :reduce(, arr, arr n) n
}

I @LucT3o0

using STL algorithms

median(arr[], n) {

mid N 2
std: :nth_element(arr, arr muwd, arr n)
(N 2 1)
arr[mid]
{

prev std: :max_element(arr, arr mid)
std: :midpoint(prev, arr[mid])

I @LucT3o0

percentile calculation

percentile(arr[], n, rank = 90) {
t (rank) 100.0f (N 1)
idx_down (t)

std: :nth_element(arr, arr tdx_down, arr n)
Llower arr[tdx_down]
(tdx_down n 1) {

upper std: :min_element(arr 1dx_down 1, arr n)
std::lerp(lower, upper, t (1dx_down))
}
Llower

I @LucT3o0

choosing containers

iINnsert N elements in the front of a container

LLLLLL

iInsert front, vector & list

std: :vector C
(1=0; i<N; i1++)
c.insert(c.begun(), 1)

std::list C
(i=0; i<N; i++)
c.push_front(1i)

I @LucT3o0

200000

180000

160000

140000

120000

100000

B push_front_vector push_front_list

600

ratio (CPU time / Noop time)
Lower is faster

200000

180000

160000

140000

120000

100000

push_back results

B push_back_vector push_back_list

600

ratio (CPU time / Noop time)
Lower is faster

bottom line

know your algorithms
know your data structures

perform experiments

@LucT3o0

Engineering the Architecture

@LucT3o0

ﬂ-

I @LucT3o0

dynamics

features iIncrementally added

quality attributes always changing

@LucT3o0

T8

' f L .‘
. (&

* . e 4 Us ; ’/.' .
a8 | B I e, .
B 1) 1 v f }};"t,.

‘ ..‘\ "‘_‘.33' |~u " *' Ny
3 '

~
.

A . -
o

» ‘ !!,.,‘!;_\. fl“"«'(’_.-““.v 5

»

%
"

&

g
o

»

engineering drchitecture

set goals for quality attributes
constantly measure important QAs
dedicate work for improving QAs when needed

I @LucT3o0

engineering drchitecture

performance testability

A 7

usability h

security

4 Y

availability modifiability

I @LucT3o0

Engineering the Processes

mMain problems

software design is unpredictable
QAs can be fragile

I @LucT3o0

waterfall

big design upfront
no iterations
results often misaligned with the goals

@LucT3o0

common agile

small sprints
deliver functionality in each iteration
upfront design is innexistent

I @LucT3o0

oboth are wrong

controlled iterative

learn through iterations
measure, meadsure, measure
constantly improve design
reduce risks

@LucT3o0

engineering

Initial guesses are wrong
iImproved with each iteration
empirical approach

@LucT3o0

another take:

initial state high risk

project completed Zero risk

@LucT3o0

process goal

iteratively decrease risk

LLLLLL

ideal project

100
75 .
-
2 50
25
0 : : : : :
Start Ilter 1 Iter 2 Ilter 3 Ilter 4 Ilter 5 Finish

@LucT3o0 Time

tips

constantly identify risks
mitigate risks asap
spend design time around risks
prototype around risks

@LucT3o0

NO risk == success

@LucT3o0

Conclusions

engineering

know what engineering Iis
knowledge — software

@LucT3o0

use engineering

IN code
for architecture
with the processes

@LucT3o0

software engineer

P R :
- . :
S A -

a3 S
~
:

Love It

Ucl 30

